Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(21)2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114608

RESUMO

At 2000 m depth in the oceans, one can hear biological, seismological, meteorological, and anthropogenic activity. Acoustic monitoring of the oceans at a global scale and over long periods of time could bring important information for various sciences. The Argo project monitors the physical properties of the oceans with autonomous floats, some of which are also equipped with a hydrophone. These have a limited transmission bandwidth requiring acoustic data to be processed on board. However, developing signal processing algorithms for these instruments requires one to be an expert in embedded software. To reduce the need of such expertise, we have developed a programming language, called MeLa. The language hides several aspects of embedded software with specialized programming concepts. It uses models to compute energy consumption, processor usage, and data transmission costs early during the development of applications; this helps to choose a strategy of data processing that has a minimum impact on performances. Simulations on a computer allow for verifying the performance of the algorithms before their deployment on the instrument. We have implemented a seismic P wave detection and a blue whales D call detection algorithm with the MeLa language to show its capabilities. These are the first efforts toward multidisciplinary monitoring of the oceans, which can extend beyond acoustic applications.

2.
Sci Rep ; 9(1): 1326, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718618

RESUMO

We launched an array of nine freely floating submarine seismometers near the Galápagos islands, which remained operational for about two years. P and PKP waves from regional and teleseismic earthquakes were observed for a range of magnitudes. The signal-to-noise ratio is strongly influenced by the weather conditions and this determines the lowest magnitudes that can be observed. Waves from deep earthquakes are easier to pick, but the S/N ratio can be enhanced through filtering and the data cover earthquakes from all depths. We measured 580 arrival times for different raypaths. We show that even such a limited number of data gives a significant increase in resolution for the oceanic upper mantle. This is the first time an array of floating seismometers is used in seismic tomography to improve the resolution significantly where otherwise no seismic information is available. We show that the Galápagos Archipelago is underlain by a deep (about 1900 km) 200-300 km wide plume of high temperature, with a heat flux very much larger than predicted from its swell bathymetry. The decrease of the plume temperature anomaly towards the surface indicates that the Earth's mantle has a subadiabatic temperature gradient.

3.
Nat Commun ; 6: 8027, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26289598

RESUMO

Our understanding of the internal dynamics of the Earth is largely based on images of seismic velocity variations in the mantle obtained with global tomography. However, our ability to image the mantle is severely hampered by a lack of seismic data collected in marine areas. Here we report observations made under different noise conditions (in the Mediterranean Sea, the Indian and Pacific Oceans) by a submarine floating seismograph, and show that such floats are able to fill the oceanic data gap. Depending on the ambient noise level, the floats can record between 35 and 63% of distant earthquakes with a moment magnitude M≥6.5. Even magnitudes <6.0 can be successfully observed under favourable noise conditions. The serendipitous recording of an earthquake swarm near the Indian Ocean triple junction enabled us to establish a threshold magnitude between 2.7 and 3.4 for local earthquakes in the noisiest of the three environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...